# Portal:Mathematics

## The **Mathematics** Portal

**Mathematics** is the study of numbers, quantity, space, structure, and change. Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered.

Selected article | Selected picture | Did you know... | Topics in mathematics

Categories | WikiProjects | Things you can do | Index | Related portals

*There are approximately 31,444 mathematics articles in Wikipedia.*

## Selected article

Blaise Pascal Image credit: User:Anarkman |

**Blaise Pascal** (pronounced [blez pɑskɑl]), (June 19, 1623 – August 19, 1662) was a French mathematician, physicist, and religious philosopher. He was a child prodigy who was educated by his father. Pascal's earliest work was in the natural and applied sciences where he made important contributions to the construction of mechanical calculators, the study of fluids, and clarified the concepts of pressure and vacuum by generalizing the work of Evangelista Torricelli. Pascal also wrote powerfully in defense of the scientific method.

A mathematician of the first order, Pascal helped create two major new areas of research. He wrote a significant treatise on projective geometry at the age of sixteen and corresponded with Pierre de Fermat from 1654 on probability theory, strongly influencing the development of modern economics and social science.

Following a mystical experience in late 1654, he abandoned his scientific work and devoted himself to philosophy and theology. However, he had suffered from ill-health throughout his life and his new interests were ended by his early death two months after his 39th birthday.

View all selected articles | Read More... |

## Selected picture

This is a hand-drawn graph of the absolute value (or modulus) of the **gamma function** on the complex plane, as published in the 1909 book *Tables of Higher Functions*, by Eugene Jahnke and Fritz Emde. Such three-dimensional graphs of complicated functions were rare before the advent of high-resolution computer graphics (even today, tables of values are used in many contexts to look up function values instead of consulting graphs directly). Published even before applications for the complex gamma function were discovered in theoretical physics in the 1930s, Jahnke and Emde's graph "acquired an almost iconic status", according to physicist Michael Berry. See a similar computer-generated image for comparison. When restricted to positive integers, the gamma function generates the factorials through the relation Γ(*n*)=(*n* − 1)!, which is the product of all positive integers from *n* − 1 down to 1 (0! is defined to be equal to 1). For real and complex numbers, the function is defined by the improper integral . This integral diverges when *t* is a negative integer, which is causing the spikes in the left half of the graph (these are simple poles of the function, where its values increase to infinity, analogous to asymptotes in two-dimensional graphs). The gamma function has applications in quantum physics, astrophysics, and fluid dynamics, as well as in number theory and probability.

*Did you know...*

- ...that in a group of 23 people, there is a more than 50% chance that two people share a birthday?
- ...that statistical properties dictated by Benford's Law are used in auditing of financial accounts as one means of detecting fraud?
- ...the hyperbolic trigonometric functions of the natural logarithm can be represented by rational algebraic fractions?
- ... that economists blame market failures on non-convexity?
- ... that, according to the pizza theorem, a circular pizza that is sliced off-center into eight equal-angled wedges can still be divided equally between two people?
- ... that the clique problem of programming a computer to find complete subgraphs in an undirected graph was first studied as a way to find groups of people who all know each other in social networks?
- ... that the Herschel graph is the smallest possible polyhedral graph that does not have a Hamiltonian cycle?

*Showing 7 items out of 73*

*WikiProjects*

The **Mathematics WikiProject** is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's **talk page**.

**Project pages**

**Essays**

**Subprojects**

**Related projects**

*Things you can do*

*Categories*

Algebra | Arithmetic | Analysis | Complex analysis | Applied mathematics | Calculus | Category theory | Chaos theory | Combinatorics | Dynamic systems | Fractals | Game theory | Geometry | Algebraic geometry | Graph theory | Group theory | Linear algebra | Mathematical logic | Model theory | Multi-dimensional geometry | Number theory | Numerical analysis | Optimization | Order theory | Probability and statistics | Set theory | Statistics | Topology | Algebraic topology | Trigonometry | Linear programming

Mathematics (books) | History of mathematics | Mathematicians | Awards | Education | Literature | Notation | Organizations | Theorems | Proofs | Unsolved problems

*Topics in mathematics*

General | Foundations | Number theory | Discrete mathematics |
---|---|---|---|

Algebra | Analysis | Geometry and topology | Applied mathematics |

*Index of mathematics articles*

ARTICLE INDEX: | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z (0–9) |

MATHEMATICIANS: | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z |

*Related portals*

Algebra | Analysis | Categorytheory | Computerscience | Cryptography | Discretemathematics | Geometry |

Logic | Mathematics | Numbertheory | Physics | Science | Set theory | Statistics | Topology |